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1 For buoyancy-driven long bubbles, also known as
volume-equivalent radius is typically greater than tha
smaller bubbles may also exhibit similar long bubble b
a b s t r a c t

The steady axisymmetric behavior of a long gas bubble moving with a flowing liquid in a straight round
tube is studied by computationally solving the nonlinear Navier–Stokes equations using a Galerkin finite-
element method with a boundary-fitted mesh for wide ranges of capillary number Ca and Reynolds num-
ber Re. As illustrated with a series of computed results, the hydrodynamic stresses due to liquid flow
around the bubble tend to shape the middle section of long bubbles into a cylinder of constant radius,
with a uniform annular liquid flow adjacent to the tube wall. But the surface tension effect tends to cause
nonuniformities in the annular liquid film thickness. The annular liquid film thickness generally increases
with increasing Ca, but decreases with increasing Re. In units of the bubble velocity relative to the tube
wall, the average liquid flow velocity U is always less than unity, indicating that the bubble always moves
faster than the average liquid flow. For convenient practical applications, a least-square fitted empirical

formula is obtained in a form of U ¼ 1� eA=ð1þ eB Ca�
eC Þ with eA; eB, and eC being functions of Re. The fact

that the behavior of long bubbles moving in a tube appears independent of the bubble length is consistent
with the inconsequential influence of the uniform annular film flow in bubble’s middle section to the
bubble dynamics. Whereas all the long bubbles exhibit similar nose profile, various tail shapes can be
obtained by adjusting the values of Re and Ca.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In a tube, the motion of a gas bubble relative to the tube wall
can occur in the presence of the buoyancy force due to gravita-
tional field or when the surrounding liquid flows in response to a
pressure gradient through the tube. The buoyancy-driven motion
of a gas bubble through viscous liquid in a (vertical) round tube
was studied by numerous authors and extended in a recent com-
putational work of Feng (2008). The present work focuses on the
steady axisymmetric motion of a long bubble with viscous liquid
flowing in a straight round tube, excluding the buoyancy effect.
Here a long bubble should be regarded as a bubble with its basic
fluid mechanical behavior, such as its velocity (relative to the tube
wall), nose and tail shapes, etc., becoming independent of the bub-
ble volume.1 Different bubble behavior is expected between the
buoyancy-driven motion and that due to the pressure-gradient-
driven liquid flow, because the background liquid flow fields differ
considerably. This problem is of interest not only for the sake of
understanding the fundamental fluid mechanics, but also in practi-
cal applications such as multiphase flow in the micro-gravity envi-
ll rights reserved.

Taylor bubbles, the bubble’s
t of the tube, although some
ehavior Feng (2008).
ronment as well as in situations where the velocity of the flowing
liquid is much greater than that due to the buoyancy-driven mo-
tion or when the buoyancy effect becomes negligible.

The motion of long bubbles in round tubes due to flowing liq-
uids was studied by Fairbrother and Stubbs (1935), who found that
the bubble moves faster than the average speed of liquid flow by
an amount that can be determined by the square root of capillary
number. The maximum value of capillary number for the formula
of Fairbrother and Stubbs to be valid was shown by Taylor
(1961) to be about an order of magnitude greater than that of
the upper limit of Fairbrother and Stubbs’ experiments. Taylor
(1961) also pointed out that the ratio of bubble speed versus the
average speed of liquid flow approaches an asymptotic value at
large capillary number. The asymptotic value suggested by Taylor
(1961) was further refined with experimental measurements by
Cox (1962) who also presented a theoretical analysis in the limit
of large capillary number. For long bubbles in the low-speed limit,
Bretherton (1961) was able to determine the liquid film thickness
from the local flow field around the bubble nose, using a lubrica-
tion flow theory with matched asymptotic expansion for the tran-
sition region between the uniform liquid film and spherical bubble
nose. Later, Bretherton’s analysis was refined by Park and Homsy
(1984) and extended to larger capillary number by Ratulowski
and Chang (1989) who computed isolated bubbles and bubble
trains moving in circular and square tubes. By experimentation,
Goldsmith and Mason (1963) established the evidence that the
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annular liquid film between the bubble nose and bubble tail has a
uniform thickness wherein the liquid is at rest with respect to the
tube wall. More general theoretical studies of thin liquid films
(associated with long bubbles) were carried out by Teletzke
(1983), Teletzke et al. (1987) and Teletzke et al. (1988) who gener-
alized the Bretherton’s (1961) theory to account for the effects of
intermolecular forces in terms of disjoining pressure in submicro-
scopically thin films, surface-active impurities, etc. with the lubri-
cation flow theory. Further experimental measurements of the
liquid film thickness left behind after the passage of a long bubble
in a round tube were carried out by Schwartz et al. (1986) with
lubrication flow analysis of the annular film stability.

Equivalent to considering the leading meniscus of a long bubble
moving with a liquid flow through the tube, the displacement of
viscous liquid by a semi-infinite bubble in a tube was computed
with a finite difference method by Reinelt and Saffman (1985)
and with a finite-element method by Shen and Udell (1985) in
the creeping flow regime. The boundary integral analysis of Marti-
nez and Udell (1989) yielded results in very good agreement with
the published experimental data, though it was restricted to the
creeping flow of (very) long bubbles in round tubes with leading
meniscus and trailing meniscus computed separately, assuming
the leading and trailing menisci being connected by an annular
film of constant thickness at rest with respect to the tube wall. A
finite-element method for computing free surface flows with the
free surface parametrized by means of spines (following that de-
scribed by Kistler and Scriven (1983)) was used by Giavedoni
and Saita (1997) to study both the axisymmetric and 2D (planar)
cases of a gas finger (or semi-infinite bubble) steadily displacing
a Newtonian liquid, revealing the types of recirculating flow pat-
terns ahead of the bubble nose as envisaged by Taylor (1961).
The fluid inertia effect studied by Giavedoni and Saita (1997) for
the displacement of viscous liquid by a semi-infinite bubble in a
2D channel was further extended by Heil (2001), showing a se-
quence of closed vortices (or ‘‘cat’s eye” pattern) appears in the
recirculating flow ahead of the bubble nose at finite Reynolds num-
ber. Computations of entire bubbles moving with flowing liquid in
a round tube seem to be lacking in the literature, especially for
bubbles with significant free-surface deformations.

In the present work, numerical solutions are computed for cases
of long bubbles in relatively small tube, in a problem domain
enclosing the entire bubble. A Galerkin finite-element method with
full Newton iterations is used for simultaneously solving the stea-
dy axisymmetric Navier–Stokes equations together with the ellip-
tic mesh-generation equations for accurately tracking the entire
bubble surface deformations Christodoulou and Scriven (1992)
and de Santos (1991).2

2. Mathematical formulation and computational method

As in Feng (2008), the problem of a gas bubble moving with a
liquid of constant density q, viscosity l, and surface tension c in
a round tube is described in terms of dimensionless parameters
and variables with length measured in units of the tube radius R,
velocity v in units of bubble’s velocity U relative to the tube wall,
and pressure p in units of lU=R. A reference frame moving with the
bubble is adopted here with the coordinate origin fixed at the bub-
ble’s centroid. With the hydrodynamic stresses due to the flow of
gas inside the bubble being ignored, the axisymmetric, laminar li-
quid flow around the bubble is governed by the steady incom-
pressible Navier–Stokes equation system
2 The computational software used here is the same one as that described in Feng
(2007, 2008), with more details given at the website http://james.q.feng.googlepages.
com/FECAWwelcome.html.
1
2

Rev � rv ¼ r � T with T � �pI þrv þ ðrvÞT ð1Þ

and

r � v ¼ 0; ð2Þ

where the Re denotes the Reynolds number defined as 2qUR=l; I
the identity tensor, and superscript ‘T’ stands for the transpose.

A cylindrical ðz; rÞ-coordinate system is used with the z-axis
coinciding with the axis of symmetry (i.e., the centerline of the
tube) and pointing in the same direction as the wall velocity rela-
tive to the bubble. Thus, at the bubble surface conservation of
momentum is satisfied by imposing the traction boundary
condition

n � T ¼ 1
Ca

dt
ds
þ n

r
dz
ds

� �
� pan on Sf ; ð3Þ

where Ca � lU=c is the capillary number, the local unit normal vec-
tor n at the free surface points from the liquid into gas, the local unit
tangent vector t points in the direction of increasing s along the
boundary and relates to n in such a way that n� t ¼ eh (with the
right-handed coordinate system ðz; r; hÞ used in the present work).
The uniform excess pressure inside the bubble pa is solved as an un-
known to satisfy an overall constraint that the volume enclosed by
the free surface Sf does not varyZ

Sf

r2 dz
ds

ds ¼ 4
3

R3
b ¼

volume
p

; ð4Þ

where Rb denotes the volume-equivalent radius of the bubble.3 An-
other overall constraint that the bubble’s centroid remains at the
coordinate originZ

Sf

z r2 dz
ds

ds ¼ 0: ð5Þ

is satisfied by solving for the value of pi at the inlet boundary (e.g.,
z ¼ �6 in Fig. 1) with the boundary condition

v r ¼ 0 and ezez : T ¼ �pi on Sinlet: ð6Þ

Moreover, the flow velocity field must satisfy

n � v ¼ 0 on Sf and r ¼ 0; ð7Þ

at the free surface Sf , due to the kinematic condition, and at the axis
of symmetry ðr ¼ 0Þ, as required by the symmetry condition. In
addition, the stress-free symmetric condition at the axis of symme-
try ðr ¼ 0Þ can be expressed as

ezer : T ¼ 0 at r ¼ 0; ð8Þ

where ez and er denote the unit vectors in the z- and r-directions,
respectively.

At the tube wall ðr ¼ 1Þ, the Dirichlet type of condition for con-
stant (relative) flow velocity is imposed, i.e.,

v ¼ ez on r ¼ 1: ð9Þ

At the downstream (or ‘outflow’) boundary (e.g., z ¼ 10 of
Fig. 1), fully-developed flow condition for hydrodynamic stresses
is used, i.e.,

ezer : T ¼ @vz

@r
and ezez : T ¼ 0 on Soutlet: ð10Þ

As illustrated by Feng (2007, 2008), solutions of the present prob-
lem can be computed by discretizing the partial differential equa-
3 As commented by Feng (2008), it seems to be more meaningful to discuss the
bubble size in terms of bubble volume rather than of bubble (volume-equivalent
radius Rb for long bubbles in relatively small tubes.
)
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Fig. 1. Finite-element mesh of the problem domain for a bubble of volume ¼ 2p (as exemplified by the case of Re ¼ 100 and Ca ¼ 1). The locations of inlet and outlet
boundaries are verified to be far enough that the changes in computed results presented here are numerically negligible with moving Sinlet and/or Soutlet further away.
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tion system (1)–(10) with the Galerkin method of weighted residu-
als using finite-element basis functions (Strang and Fix, 1973). In
doing so, the problem domain is divided into a set of quadrilateral
elements (cf. Fig. 1), with biquadratic basis functions being used
for expanding the velocity field and linear discontinuous basis func-
tion for pressure. The positions of finite-element mesh nodes
around the deformable bubble surface are determined by a pair of
elliptic partial differential equations that are also be descretized
by the Galerkin finite-element method (Christodoulou and Scriven,
1992; de Santos, 1991). Then, the set of nonlinear algebraic equa-
tions of Galerkin’s weighted residuals is simultaneously solved by
Newton’s method of iterations (Ortega and Rheinoldt, 1970). At
each Newton iteration, the Jacobian matrix of sensitivities of resid-
uals to unknowns is evaluated with the values of unknowns deter-
mined in the previous iteration. The resulting linear algebra system
is then solved by direct factorization of the Jacobian matrix with a
modified version of Hood’s frontal solver (Hood, 1976). The itera-
tion is continued until the L2 norm of residual vector becomes less
than 10�8.

With the present mathematical formulation, the Reynolds num-
ber Re and capillary number Ca are the two independent parame-
ters can be conveniently specified. The value of pi in (6) is solved as
part of the solution, becoming another independent parameter
associated with the mathematical system. But the value of pi de-
pends on the locations of the inlet and outlet boundaries; therefore
it does not easily connect to a practically measurable quantity. As
the direct consequence of pi, the average liquid flow velocity (rel-
ative to the tube wall),

U � 2
Z 1

0
ð1� vzÞr dr on Sinlet ðor SoutletÞ; ð11Þ

relates to the (constant) liquid flow rate in the tube independent of
the location of inlet and outlet boundaries.4 Hence, U instead of pi is
used in the present work as an independent parameter describing
the driving mechanism for the bubble motion (relative to the tube
wall). Once Re;Ca, and U are given, other relevant dimensionless
parameters associated with a solution can all be calculated in terms
of them. For example, the Weber number We � 2qU2R=c can be ex-
pressed as ReCa. Because of the nondimensional form of governing
equations adopted in the present work, each solution corresponding
to a set of specified Re, Ca, and U can represent numerous seemingly
different fluid systems and tube sizes by virtue of dynamical similar-
ity (Batchelor, 1967).
4 Due to the imposed pressure difference between inlet and outlet boundaries �pi ,
the flow velocity at the inlet boundary becomes a superposition of a Poiseuille flow
and a uniform flow at the bubble speed (because the reference frame here is chosen to
move with the bubble).
3. Solutions for long bubbles moving with flowing liquids

With the availability of many published data and formulas for
the case of long bubbles at Re ¼ 0, a comparison of the present
computational results with previous ones should be an interesting
first exercise. At Re ¼ 0 and Ca ¼ 0:001, the computed values of U
are, respectively, 0.97531 and 0.97526 for bubbles of volume = 2p
and 3p, in reasonable agreement with Bretherton’s theory (1961)
for Ca 6 5� 10�3,

U ¼ 1� 1:29 ð3CaÞ2=3
; ð12Þ

which predicts the value of U equal to 0.97345 at Ca ¼ 0:001. For
10�3

6 Ca 6 10�2, Fairbrother and Stubbs (1935) obtained an
empirical correlation formula that corresponds to

U ¼ 1�
ffiffiffiffiffiffi
Ca
p

; ð13Þ

predicting 0.9684 (as comparable to the computed value 0.9753),
0.9000, and 0.6838 for Ca ¼ 0:001, 0.01, and 0.1, respectively. The
present computations yield the values of U for Ca ¼ 0:01 and 0.1,
respectively, 0.8976 (0.8967) and 0.6944 (0.6945) for bubbles of
volume = 3pð¼ 2pÞ at Re ¼ 0, validating (13) up to Ca ¼ 0:1 as did
Taylor (1961) experimentally.

Based on the assumption that the liquid in a uniform annular li-
quid film is at rest with respect to the tube wall (an evidence
experimentally established by Goldsmith and Mason (1963)), con-
servation of mass leads to (cf. Fairbrother and Stubbs, 1935)

r̂2 ¼ U; ð14Þ

where r̂ denotes the theoretical value of radial coordinate of the
annular film free surface with uniform thickness. Based on results
of (13) for U at Ca ¼ 0:001, 0.01, and 0.1, (14) predicts r̂ ¼ 0:9841,
0.9487, and 0.8269, respectively. If (12) is used for Ca ¼ 0:001, the
value of r̂ would be equal to 0.9866. For a comparison, the computed
rz¼0 ¼ 0:9872 (0.9866), 0.9472 (0.9424), and 0.8327 (0.8289) for
bubbles of volume ¼ 3pð¼ 2pÞ at Ca ¼ 0:001, 0.01 and 0.1
ðRe ¼ 0Þ, in very good agreement with those corresponding values
of r̂. As expected, the differences in U and rz¼0 between bubbles of
volume ¼ 3p and 2p are negligible. However, the values of com-
puted vz¼0 are 0.9957, 1.0049, and 0.9968 for bubbles of volume
¼ 3p as consistent with the uniform annular liquid film theory;
but the values of vz¼0 for bubbles of volume ¼ 2p are computed as
0.9285, 0.8938, and 0.9650, indicating considerable nonuniformities
of the liquid film free surface at small Ca when bubble volume is not
sufficiently large (similar to that found with the buoyancy-driven
motion of long bubbles in a tube by Feng, 2008).

Because the uniformity of the liquid film thickness improves at
larger Ca, the computational results for bubble of volume ¼ 2p are
expected to compare well with the theory based on uniform film
flow for Ca P 1. For example, at Ca ¼ 2 (and Re ¼ 0) the computed
U equals 0.4416 that leads to r̂ ¼ 0:6646 according to (14), while
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the computed rz¼0 and rmax are both 0.6622 (with vz¼0 ¼ 0:9908 and
vmax ¼ 0:9911), respectively (for bubble of volume¼ 2p). Again as a
comparison, the asymptotic value of U suggested by Taylor (1961)
based on the measured data at Ca ¼ 2 is 0.45 corresponding to
r̂ ¼ 0:6708. If Ca is increased to 10, the computed U becomes
0.4084, corresponding to r̂ ¼ 0:6391 according to (14), in good
agreement with the computed rz¼0 ¼ rmax ¼ 0:6367 (with vz¼0 ¼
vmax ¼ 0:9917). The asymptotic value of U obtained by Cox (1962),
based on measurements at Ca > 10, is 0.40. The values of U
computed at Ca ¼ 2 and 10 (for Re ¼ 0) by Giavedoni and Saita
(1997) with a semi-infinite long bubble were 0.4410 and 0.4080,
respectively.

By virtue of the presently computed results over a large range of
Ca values at Re ¼ 0, a least-square fitted formula can be obtained in
the logistic dose–response form

U ¼ 1�
eA

1þ eB Ca�eC ; ð15Þ

with eA ¼ 0:6202; eB ¼ 0:1946, and eC ¼ 0:7111. Practically (15) is
quite accurate for the entire range of Ca value; for example, it yields
U ¼ 0:9774, 0.8991, 0.6900, 0.4808, and 0.4024, (whereas the corre-
sponding computed values are 0.9753, 0.8967, 0.6945, 0.4754, and
0.4084) for Ca ¼ 0:001, 0.01, 0.1, 1, and 10, respectively. At
Ca ¼ 10�4 (not included in the least-square fitting), it predicts
U ¼ 0:9955, in good agreement with 0.9942 given by (12) and the
computed value of 0.9950. As Ca!1, the asymptotic value of U
is predicted by (15) as 0.3798.

3.1. Flow structure and free surface profiles

For effectively displaying the flow field around the entire bub-
ble, results for bubbles of volume ¼ 2p are presented herein (such
that the aspect ratio of bubble length and tube radius is not exces-
sively large).

3.1.1. Long bubbles (of volume ¼ 2p) at Re ¼ 1
For cases of small Reynolds number, Fig. 2 shows plots of

streamlines and shapes of bubbles for Re ¼ 1 at Ca ¼ 0:01, 0.1, 1,
Fig. 2. Streamlines and shapes of bubbles (from z ¼ �4:5 to 5) of volume ¼ 2p for Re ¼ 1 a
0, ±0.001, ±0.002, ±0.005, ±0.01, ±0.02, ±0.05, ±0.1, etc. as in Feng (2008).
5, and 10 (which appear to be basically the same as those corre-
sponding to Re ¼ 0). As discussed by Taylor (1961) based on a kine-
matic consideration and later revealed by Martinez and Udell
(1989) with a boundary integral analysis and Giavedoni and Saita
(1997) with finite-element computations, a recirculating flow
ahead of the bubble nose appears in the plots for Ca ¼ 0:01 and
0.1 in Fig. 2, with intensity decreasing with increasing Ca and com-
pletely disappearing in the plots for Ca P 1. Actually the stagna-
tion ring on the bubble surface is found to collapse into a
stagnation point at the bubble nose tip at Ca � 0:610, as consistent
with the finding of Giavedoni and Saita (1997) (at Ca � 0:605 for
Re ¼ 0 and semi-infinite bubble). With increasing Ca from 0.610,
the recirculating flow detaches from the bubble surface and moves
toward upstream forming a second stagnation point on the tube
centerline (cf. Taylor, 1961; Giavedoni and Saita, 1997). For exam-
ple, the second stagnation point is located about 0.622 ahead of the
bubble nose tip on the tube centerline when Ca ¼ 0:690. The recir-
culating flow ahead of the bubble nose disappears for Ca > 0:709
whereas Giavedoni and Saita, 1997 reported Ca > 0:690 (for
Re ¼ 0 and semi-infinite bubble). Martinez and Udell (1989) re-
ported a recirculation being apparent for Ca < 0:5 and disappear-
ing for Ca � 0:7.

Table 1 shows the computed parameters for bubbles of volume
¼ 2p at various values of Ca for Re ¼ 1. As expected, the values of
U; rz¼0;vz¼0; rmax;vmax, etc. are very close to those corresponding
values at Re ¼ 0 presented earlier. According to the analysis of Tay-
lor (1961), recirculating flow ahead of the bubble nose is expected
to appear when U > 0:5. Thus, the critical value of Ca for appear-
ance of the recirculating flow must be between 0.5 and 1 because
U ¼ 0:5281 > 0:5 and 0.4774 < 0.5 at Ca ¼ 0:5 and 1. Actually, at
Ca ¼ 0:709 (Ca ¼ 0:699 for Re ¼ 0) when the recirculating flow
ahead of the bubble nose just disappears, the computed U is
0.5003 (0.4995). Hence, computations of bubbles of volume ¼ 2p
can yield results quite accurately reflecting the general long bubble
behavior, especially when Ca > 0:5 that the annular liquid film in
the middle section becomes quite uniform as indicated by the val-
ues of vz¼0 and vmax approaching unity. Little differences can be no-
ticed between the results for Re ¼ 0 and 1.
t Ca ¼ 0:01, 0.1, 1, 5, and 10. The contour values for streamfunctions shown here are



Table 1
Values of Ca;U; vz¼0; rz¼0 ;vmax ; rmax; zmin , and zmax for bubbles of volume ¼ 2p at Re ¼ 1.

Ca U vz¼0 rz¼0 vmax rmax zmin zmax

0.001 0.9754 0.9284 0.9866 1.4704 0.9901 �1.369 1.345
0.01 0.8967 0.8932 0.9423 1.4091 0.9591 �1.484 1.397
0.1 0.6951 0.9642 0.8291 1.1525 0.8516 �1.877 1.640
0.5 0.5281 0.9871 0.7240 0.9931 0.7252 �2.417 2.093
1 0.4773 0.9893 0.6883 0.9911 0.6888 �2.653 2.330
2 0.4436 0.9905 0.6635 0.9911 0.6637 �2.838 2.558
5 0.4193 0.9913 0.6451 0.9915 0.6451 �2.986 2.804

10 0.4103 0.9916 0.6382 0.9917 0.6382 �3.045 2.929
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If the computed values of U at Re ¼ 1 are fitted to the logistic
dose–response curve (15), the values of eA; eB, and eC are, respec-
tively, 0.6160, 0.1868, and 0.7213 (which are practically the
same as those for Re ¼ 0). It yields U ¼ 0:9782, 0.9003, 0.6894,
0.4810, and 0.4051 for Ca ¼ 0:001, 0.01, 0.1, 1, and 10,
respectively.

Although the values of vz¼0 and vmax (as well as rz¼0 and rmax) in
Table 1 indicate noticeable nonuniformities of the annular liquid
film with bubbles of volume ¼ 2p for Ca < 0:5, the computed value
of U can still be quite accurate for bubbles of volume ¼ 2p when
compared with that of volume ¼ 3p. For example, at Ca ¼ 0:1 the
computed vz¼0 ¼ 0:9968 for a bubble of volume ¼ 3p (much closer
to unity than 0.9642 for a bubble of volume¼ 2p) with a computed
U ¼ 0:69517 (basically the same as that in Table 1). The uniformity
of the annular film for a bubble of volume ¼ 3p is verified by
examining the degree of rz¼0 (=0.8331, yielding r2

z¼0 ¼ 0:6941)
and U satisfying (14).

As discussed by Martinez and Udell (1989), the thickness of the
liquid film generally increases with increasing Ca, and a concave
deformation (negative curvature) occurs at bubble tail for Ca > 1.
A similar observation was reported by Goldsmith and Mason
(1963), with a reentrant cavity at the trailing meniscus for large
Ca. Martinez and Udell (1989) also mentioned difficulties in com-
puting solutions for the trailing meniscus when Ca > 1; they com-
puted trailing meniscus solutions up to Ca ¼ 1:5 while the leading
meniscus solutions were obtained up to Ca ¼ 10. The present fi-
Fig. 3. As Fig. 2 but for Re ¼ 10 a
nite-element code can be used to compute solutions for the entire
bubble up to Ca ¼ 10 (for Re 6 1), beyond which the deformation
of the bubble trailing meniscus becomes too severe for the present
elliptic meshing scheme to follow.

3.1.2. Long bubbles (of volume ¼ 2p) at Re ¼ 10
At Re ¼ 10, Fig. 3 shows very much the same flow structures

and bubble shapes as those in Fig. 2, especially for Ca 6 1 (as also
seen in Table 2). For Ca > 1, the fluid inertial effect at Re ¼ 10 tends
to form a bulge at the bubble tail rim toward the relatively high
speed flow (in a shrinking liquid film) along the tube wall (similar
to that found by Feng and Basaran (1994)). Although the recirculat-
ing flow ahead of the bubble nose disappears for Ca P 1, a weak
recirculating eddy can be noticed in the bubble tail due to the flow
separation at the tail tip and local concave free surface for Ca P 5
(cf. Figs. 2 and 3). Even at Ca ¼ 1, a recirculating eddy exists for
Re ¼ 10, ending at z ¼ 2:642 in the wake. Interestingly, the bubble
shape of Re ¼ 10 and Ca ¼ 1 (or We ¼ 10) in Fig. 3 exhibits some
similarities to that of buoyancy-driven bubble at Re ¼We ¼ 10
Feng (2008), with about the same thickness of annular liquid film,
despite quite different flow structures (as reflected in the stream-
line distributions).

From the values of U in Table 2, it can be recognized that the
recirculating flow ahead of bubble nose disappears at Ca slightly
less than 1 (for Re ¼ 10) based on Taylor’s kinematic consideration
that leads to the criterion of U ¼ 0:5.

If the computed values of U at Re ¼ 10 are fitted to the logistic
dose–response curve (15), the values of eA; eB, and eC are 0.6057,
0.2036, and 0.6939, respectively. It yields U ¼ 0:9763, 0.8986,
0.6981, 0.4968, and 0.4268 for Ca ¼ 0:001, 0.01, 0.1, 1, and 8,
respectively.

Unlike the small Reynolds number cases where solutions
up to Ca ¼ 10 can be obtained, computations become difficult
for the cases of Ca > 8 at Re ¼ 10 due to the cusp formation
at the bubble’s trailing tip. The similar cusp formation for
spherical-cap bubbles moving in an extended liquid was com-
puted by Feng (2007), who found it was consistent with the
skirt formation criterion established by Hnat and Buckmaster
(1976).
t Ca ¼ 0:01, 0.1, 1, 5, and 8.



Table 2
Values of Ca;U;vz¼0; rz¼0; vmax; rmax; zmin , and zmax for bubbles of volume ¼ 2p at
Re ¼ 10.

Ca U vz¼0 rz¼0 vmax rmax zmin zmax

0.001 0.9753 0.9279 0.9866 1.4715 0.9901 �1.369 1.345
0.01 0.8968 0.8875 0.9422 1.4169 0.9594 �1.485 1.397
0.1 0.7016 0.9553 0.8321 1.1671 0.8564 �1.872 1.623
0.5 0.5421 0.9799 0.7324 0.9933 0.7349 �2.397 2.010
1 0.4922 0.9833 0.6978 0.9906 0.6994 �2.629 2.208
2 0.4583 0.9855 0.6734 0.9903 0.6746 �2.811 2.422
5 0.4337 0.9871 0.6551 0.9908 0.6561 �2.958 2.665
8 0.4268 0.9877 0.6501 0.9915 0.6510 �2.999 2.798
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3.1.3. Long bubbles (of volume ¼ 2p) at Re ¼ 100
As the Reynolds number is increased to 100, the bubble shapes

and flow structures shown in Fig. 4 exhibit noticeable differences
when Ca > 0:1 compared to those corresponding to the same values
of Ca for Re 6 10 (as in Figs. 2 and 3). It is difficult to compute a con-
verged solution for Ca > 2 at Re ¼ 100 (which corresponds to
We ¼ 200). The bubble shape of Re ¼ 100 and Ca ¼ 0:1 (or
We ¼ 10) in Fig. 4 looks quite different from that of a buoyancy-dri-
ven bubble (in Feng, 2008), unlike the case of Re ¼We ¼ 10, indi-
cating significant behavioral variations due to the flow structure
change. Unlike the bubble nose and the flow structure thereabout
that exhibit only insignificant changes with increasing Re (as com-
mented by Giavedoni and Saita, 1997; Heil, 2001, with semi-infinite
bubbles), the bubble tail profile and wake structure can be influ-
enced significantly by the value of Re as well as that of Ca. This
observation is similar to the buoyancy-driven bubbles presented
by Feng (2008). But the shape of recirculating flow in the wake
looks quite different from that of the buoyancy-driven bubbles.

Up to Re ¼ 100, the results computed here show that all the
streamlines ahead of the bubble nose are open, smoothly connect-
ing to the inlet boundary; no sign of the ‘‘cat’s eye” pattern of
closed vortices is present. Actually, the formation of the closed vor-
tex streamline pattern ahead of the bubble nose at finite Re was
computationally found by Heil (2001) in a 2D channel, not for
the axisymmetric case of round tubes. Thus, whether closed vorti-
ces appear ahead of the bubble nose at finite Re might become a
signal for differentiating the 2D case and axisymmetric case.5 Inter-
estingly, in the wake behind the bubble tail, the closed recirculating
flow appears at Re ¼ 100 for Ca P 0:5 (cf. Fig. 4), with a weak second
vortex also appearing further downstream although not shown in
the streamline plot of Fig. 4.

The values of U in Table 3 for Ca 6 2 (and Re ¼ 100) are all
greater than 0.5. It is then no surprise that all the cases in Fig. 4
show a recirculating flow ahead of the bubble nose. Because at
Ca ¼ 2 we have U ¼ 0:5061 � 0:5, the stagnation ring almost col-
lapses to a stagnation point at the bubble nose tip and the recircu-
lating flow is confined in a very small region (cf. Fig. 4). Examining
the values of rz¼0; rmax and vz¼0;vmax in Table 3 suggests that the
annular liquid film is not very uniform even at Ca P 1 for bubbles
of volume ¼ 2p. The computed values of �U with bubbles of volume
¼ 2p are nonetheless quite accurate for general long bubbles. For
example, the computed values of U with bubble volume increasing
to 2:5p (for improving the annular liquid film uniformity) are,
respectively, 0.5882 (with rmax ¼ 0:7652 and vmax ¼ 0:9862) and
0.5401 (with rmax ¼ 0:7285 and vmax ¼ 0:9679) for Ca ¼ 0:5 and 1.

If the computed values of U at Re ¼ 100 are fitted to the logistic
dose–response curve (15), the values of eA; eB, and eC become
5 To verify this fact, the computational code with the same mesh as presented here
was also used to compute a few 2D cases at finite Re (as a test), which indeed showed
closed vortex streamline pattern ahead of the bubble nose.
0.5845, 0.2764, and 0.6176, respectively. It yields U ¼ 0:9718,
0.8984, 0.7276, 0.5421, and 0.5047 for Ca ¼ 0:001, 0.01, 0.1, 1,
and 2, respectively.

3.2. Empirical formulas of U for long bubbles

With the computed values of eAðReÞ; eBðReÞ, and eCðReÞ for the lo-
gistic dose–response curve (15) of the average liquid flow velocity
U at Re ¼ 1, 10, and 100 (log Re ¼ 0, 1, and 2), quadratic fitting for-
mulas can be obtained as

eAðReÞ ¼ �0:0054ðlog ReÞ2 � 0:0048 log Reþ 0:6160eBðReÞ ¼ 0:0280ðlog ReÞ2 � 0:0112 log Reþ 0:1868eCðReÞ ¼ �0:0244ðlog ReÞ2 � 0:0030 log Reþ 0:7213

8>><
>>: for Re P 1;

(with log Re denoting log10Re) for the general empirical formula

U ¼ 1�
eAðReÞ

1þ eBðReÞ Ca�eC ðReÞ
: ð16Þ

For Re 6 1, simple linear fitting formulas

eAðReÞ ¼ 0:6202� 0:0042ReeBðReÞ ¼ 0:1946� 0:0078ReeCðReÞ ¼ 0:7111þ 0:0102Re

8>><
>>: for Re 6 1;

may suffice for practical applications with (16). For example, at
Ca ¼ 0:1 for Re ¼ 0:5, 2, 50, and 200, (16) predicts 0.6897, 0.6836,
0.7143, and 0.7340, in good agreement with the computed U of
0.6946, 0.6959, 0.7204, and 0.7294, respectively.

3.3. Long bubbles of different volumes

Similar to that shown by Feng (2008) (as well as many pub-
lications cited therein) for the buoyancy-driven motion of long
bubbles in tubes, the basic fluid mechanics behavior of long bub-
bles moving with flowing liquid in a tube appears to be indepen-
dent of the bubble volume (or bubble length) typically when a
bubble’s volume-equivalent radius exceeds that of the tube
(namely, the bubble volume >4p/3). As an example, Fig. 5 shows
the similarity of the local distribution of pressure contours
around the bubble nose and tail for bubbles of different volumes
at Re ¼ 10 and Ca ¼ 0:5. The shapes of as well as pressure distri-
butions around the bubble nose and tail remain invariant, indi-
cating that the pressure drop (i.e., the number of pressure
contours) across the bubble is independent of the bubble length.
So is the value of U ¼ 0:5421 for bubbles with volume P 4p=3
(at Re ¼ 10 and Ca ¼ 0:5). This is consistent with the fact that
the middle section of uniform annular film flow contributing lit-
tle hydrodynamic stresses.

Interesting features in hydrodynamic stress distributions can be
demonstrated by examining the z-component of traction, or z-trac-
tion, Tz, and the net normal traction, or n-traction, Tn, on the bub-
ble surface, where

Tz � ez � ð�pan� n � TÞ

¼ �nz �ðp� paÞ þ 2
@vz

@z

� �
� nr

@vz

@r
þ @v r

@z

� �
; ð17Þ

and

Tn � pa þ nn : T

¼ pa � pþ 2 nznz
@vz

@z
þ nrnr

@v r

@r
þ nznr

@vz

@r
þ @v r

@z

� �� �
; ð18Þ

with nz; nr denoting the z; r-components of the local unit normal
vector n. The term of constant excess pressure pa inside the bubble



Fig. 4. As Fig. 2 but for Re ¼ 100 at Ca ¼ 0:01, 0.1, 0.5, 1, and 2.

Table 3
Values of Ca;U; vz¼0; rz¼0 ; vmax ; rmax; zmin , and zmax for bubbles of volume ¼ 2p at
Re ¼ 100.

Ca U vz¼0 rz¼0 vmax rmax zmin zmax

0.001 0.9734 0.9217 0.9864 1.4815 0.9901 �1.370 1.346
0.01 0.8958 0.8261 0.9393 1.4958 0.9610 �1.496 1.399
0.1 0.7287 0.8741 0.8401 1.2625 0.8807 �1.912 1.550
0.5 0.5884 0.8273 0.7354 0.9662 0.7623 �2.530 1.859
1 0.5402 0.8253 0.6980 0.9405 0.7231 �2.827 2.149
2 0.5061 0.8278 0.6713 0.9410 0.6984 �3.070 2.528
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does not contribute to the integrated drag force; it only serves as a
common reference pressure for comparison purposes. However, pa

in Tn plays a key role in determining the sum of the local principal
curvatures (or twice the local mean curvature) of the bubble
surface.

Fig. 6 shows the z-traction (a) and n-traction (b) distribution
along the bubble surface for bubbles of different volumes at
Fig. 5. Pressure contours ðp ¼ pa � 1; pa � 2;pa � 3; . . .Þ for bubbles of vol
Re ¼ 10 and Ca ¼ 0:5. The z-traction is negative around the bubble
nose whereas positive around the bubble tail while diminishing in
the middle section (where nz � 0 and nr � 1 butrv � 0), such that
the net drag force computed by integrating Tz along the bubble
surface as

2p
Z

Sf

Tz r ds ¼ 0; ð19Þ

when the buoyancy force is absent. As discussed in Feng (2008) for
buoyancy-driven long bubbles, the diminishing value of Tz in the
middle section of long bubbles is the key feature to understanding
the bubble velocity independence of the bubble length. The value of
the n-traction Tn decreases from the tip of bubble nose until reach-
ing the middle section of uniform annular film flow, where
Tnð� pa � pÞ approaches that of ðCarmaxÞ�1. Toward the bubble tail,
Tn sharply increases due to the high local curvatures at the rim
and then drops down where the surface becomes flat at center of
the bubble tail.
ume ¼ 4p=3;2p, and 3p at Re ¼ 10 and Ca ¼ 0:5 (from z ¼ �4 to 4).



a

b

Fig. 6. (a) The z-traction Tz and (b) the n-traction Tn along the bubble surface for
bubbles of volume (i) 4p=3, (ii) 2p, (iii) 3p, at Re ¼ 10 and Ca ¼ 0:5.
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4. Conclusions

The Galerkin finite-element method illustrated here is an effec-
tive tool for investigating free-surface flow problems such as the
present one of long bubbles moving in a tube with a flowing vis-
cous liquid. The behavior of long bubbles for wide ranges of Ca
and Re with a variety of shapes can be solved for the steady axi-
symmetric flow field as well as the free-surface profiles with suffi-
cient accuracy in great details.

When the surface tension effect is relatively weak at Ca > 1, the
hydrodynamic stresses due to liquid flow around the bubble tend
to shape the long bubble surface such that the middle section be-
comes a cylinder of constant radius with a uniform annular liquid
flow adjacent to the tube wall. The annular liquid film thickness
generally increases with increasing Ca, but decreases with increas-
ing Re. With increasing the surface tension effect, e.g., when
Ca < 0:1, the uniformity of annular liquid film deteriorates typi-
cally with a bulge forming at the rim of the bubble tail similar to
that with the buoyancy-driven long bubbles (Feng, 2008). In units
of the bubble moving velocity relative to the tube wall, the average
liquid flow velocity U is always less than unity indicating that the
bubble always moves faster than the average liquid flow, as ob-
served by Fairbrother and Stubbs (1935). The value of U generally
decreases with increasing Ca, but increases with increasing Re,
which is consistent with the trend of the annular liquid film thick-
ness (reported by for the axisymmetric case Giavedoni and Saita,
1997) and the relationship (14).

With a large number of computational results at various values
of Ca and Re made available, an empirical formula of �U as a func-
tion of Ca and Re can be obtained in the logistic dose–response

form, U ¼ 1� eA=ð1þ eB Ca�
eC Þ, with eA; eB, and eC being functions of

Re. The predicted value of U at given Ca and Re is shown to agree
with the computed value within a few percents, quite adequate
for most practical applications.

Regardless the driving mechanisms, whether it is due to buoy-
ancy (as in Feng, 2008) or liquid flow, the behavior of long bubbles
moving in a tube appears independent of the bubble volume (or
bubble length). This fact can be explained by examining the stress
distributions along the bubble surface, as illustrated in Section 3.3
with plots of z-component and normal tractions for bubbles of dif-
ferent volumes. It is made plain that the uniform annular liquid
film flow in bubble’s middle section has little influence to fluid me-
chanic behavior of the bubble.
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